LINK DOWNLOAD MIỄN PHÍ TÀI LIỆU "rất ngon mà không sợ nóng....": http://123doc.vn/document/567260-rat-ngon-ma-khong-so-nong.htm
2
+
3y
2
- 12 = 0. Tìm điểm trên elip sao cho tiếp tuyến của elip tại điểm đó cùng với các trục toạ độ tạo
thành tam giác có diện tích nhỏ nhất.
2) Trong không gian với hệ trục toạ độ Đềcác vuông góc Oxyz, cho hai mặt phẳng (P): x - y +
z + 5 = 0 và (Q): 2x + y + 2z + 1 = 0. Viết phương trình mặt cầu có tâm thuộc mặt phẳng (P) và tiếp
xúc với mặt phẳng (Q) tại M(1; - 1; -1).
Câu5: (2 điểm)
1) Tính diện tích hình phẳng giới hạn bởi các đường: y = 2 -
4
2
x
và x + 2y = 0
2) Đa thức P(x) = (1 + x + x
2
)
10
được viết lại dưới dạng: P(x) = a
0
+ a
1
x + + a
20
x
20
. Tìm hệ số
a
4
của x
4
.
Đề số 6
Câu1: (2 điểm)
Cho hàm số: y =
1
2
−
++
x
mxmx
(1) (m là tham số)
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = -1.
2) Tìm m để đồ thị hàm số (1) cắt trục hoành tại hai điểm phân biệt và hai điểm đó có hoành
độ dương.
Câu2: (2 điểm)
1) Giải phương trình: cotgx - 1 =
tgx
xcos
+1
2
+ sin
2
x -
2
1
sin2x
2) Giải hệ phương trình:
+=
−=−
12
11
3
xy
y
y
x
x
Câu3: (3 điểm)
1) Cho hình lập phương ABCD.A'B'C'D'. Tính số đo của góc phẳng nhị diện
[B, A'C, D].
2) Trong không gian với hệ toạ độ Đềcác Oxyz cho hình hộp chữ nhật ABCD.A'B'C'D' có A
trùng với gốc của hệ toạ độ, B(a; 0; 0), D(0; a; 0), A'(0; 0; b)
(a > 0, b > 0). Gọi M là trung điểm cạnh CC'.
a) Tính thể tích khối tứ diện BDA'M theo a và b.
b) Xác định tỷ số
b
a
để hai mặt phẳng (A'BD) và (MBD) vuông góc với nhau.
Câu4: (2 điểm)
1) Tìm hệ số của số hạng chứa x
8
trong khai triển nhị thức Niutơn của:
n
x
x
+
5
3
1
, biết rằng:
( )
37
3
1
4
+=−
+
+
+
nCC
n
n
n
n
(n ∈ N
*
, x > 0)
2) Tính tích phân: I =
∫
+
32
5
2
4xx
dx
Câu5: (1 điểm)
Cho x, y, z là ba số dương và x + y + z ≤ 1. Chứng minh rằng:
82
111
2
2
2
2
2
2
≥+++++
z
z
y
y
x
x
Đề số 7
Câu1: (2 điểm)
Cho hàm số: y = x
3
- 3x
2
+ m (1)
1) Tìm m để đồ thị hàm số (1) có hai điểm phân biệt đối xứng với nhau qua gốc toạ độ.
2) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 2 .
Câu2: (2 điểm)
1) Giải phương trình: cotgx - tgx + 4sin2x =
xsin2
2
2) Giải hệ phương trình:
+
=
+
=
2
2
2
2
2
3
2
3
y
x
x
x
y
y
Câu3: (3 điểm)
1) Trong mặt phẳng với hệ tọa độ Đêcác vuông góc Oxy cho ∆ABC có: AB = AC, = 90
0
.
Biết M(1; -1) là trung điểm cạnh BC và G
0
3
2
;
là trọng tâm ∆ABC. Tìm toạ độ các đỉnh A, B, C .
2) Cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy ABCD là một hình thoi cạnh a, góc =
60
0
. gọi M là trung điểm cạnh AA' và N là trung điểm cạnh CC'. Chứng minh rằng bốn điểm B', M,
D, N cùng thuộc một mặt phẳng. Hãy tính độ dài cạnh AA' theo a để tứ giác B'MDN là hình vuông.
3) Trong không gian với hệ toạ độ Đềcác Oxyz cho hai điểm A(2; 0; 0) B(0; 0; 8) và điểm C sao
cho
( )
060 ;;AC =
. Tính khoảng cách từ trung điểm I của BC đến đường thẳng OA.
Câu4: (2 điểm)
1) Tìm giá trị lớn nhất và nhỏ nhất của hàm số: y = x +
2
4 x−
2) Tính tích phân: I =
∫
π
+
−
4
0
2
21
21
dx
xsin
xsin
Câu5: (1 điểm)
Cho n là số nguyên dương. Tính tổng:
n
n
n
nnn
C
n
CCC
1
12
3
12
2
12
1
2
3
1
2
0
+
−
++
−
+
−
+
+
(
k
n
C
là số tổ hợp chập k của n phần tử)
Đề số 8
Câu1: (2 điểm)
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số: y =
2
42
2
−
+−
x
xx
(1)
2) Tìm m để đường thẳng d
m
: y = mx + 2 - 2m cắt đồ thị của hàm số (1) tại hai điểm phân biệt.
Câu2: (2 điểm)
1) Giải phương trình:
0
242
222
=−
π
−
x
cosxtg
x
sin
2) Giải phương trình:
322
22
2
=−
−+− xxxx
Câu3: (3 điểm)
1) Trong mặt phẳng với hệ tọa độ trực Đêcác vuông góc Oxy cho đường tròn:
(C): (x - 1)
2
+ (y - 2)
2
= 4 và đường thẳng d: x - y - 1 = 0
Viết phương trình đường tròn (C') đối xứng với đường tròn (C) qua đường thẳng d. Tìm tọa độ các
giao điểm của (C) và (C').
2) Trong không gian với hệ toạ độ Đềcác vuông góc Oxyz cho đường thẳng:
d
k
:
=++−
=+−+
01
023
zykx
zkyx
Tìm k để đường thẳng d
k
vuông góc với mặt phẳng (P): x - y - 2z + 5 = 0.
3) Cho hai mặt phẳng (P) và (Q) vuông góc với nhau, có giao tuyến là đường thẳng ∆. Trên ∆
lấy hai điểm A, B với AB = a. Trong mặt phẳng (P) lấy điểm C, trong mặt phẳng (Q) lấy điểm D sao
cho AC, BD cùng vuông góc với ∆ và AC = BD = AB. Tính bán kính mặt cầu ngoại tiếp tứ diện
ABCD và tính khoảng cách từ A đến mặt phẳng (BCD) theo a.
Câu4: (2 điểm)
1) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: y =
1
1
2
+
+
x
x
trên đoạn [-1; 2]
2) Tính tích phân: I =
∫
−
2
0
2
dxxx
Câu5: (1 điểm)
Với n là số nguyên dương, gọi a
3n - 3
là hệ số của x
3n - 3
trong khai triển thành đa thức của (x
2
+
1)
n
(x + 2)
n
. Tìm n để a
3n - 3
= 26n.
Đề số 9
Câu1: (2 điểm)
Cho hàm số: y =
( )
12
33
2
−
−+−
x
xx
(1)
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).
2) Tìm m để đường thẳng y = m cắt đồ thị hàm số (1) tại hai điểm A, B sao cho AB = 1.
Câu2: (2 điểm)
1) Giải bất phương trình:
( )
3
7
3
3
162
2
−
−
>−+
−
−
x
x
x
x
x
2) Giải hệ phương trình:
( )
=+
=−−
25
1
1
22
4
4
1
yx
y
logxylog
Câu3: (3 điểm)
1) Trong mặt phẳng với hệ tọa độ Đềcac Oxy cho điểm A(0; 2) và B
( )
13 −− ;
. Tìm toạ độ
trực tâm và toạ độ tâm đường tròn ngoại tiếp ∆OAB.
2) Trong không gian với hệ toạ độ Đềcác Oxyz cho hình chóp S.ABCD có đáy ABCD là hình
thoi, AC cắt BD tại gốc toạ độ O. Biết A(2; 0; 0) B(0; 1; 0)
S(0; 0; 2
2
). Gọi M là trung điểm của cạnh SC.
a) Tính góc và khoảng cách giữa hai đường thẳng SA và BM.
b) Giả sử mặt phẳng (ABM) cắt SD tại N. Tính thể tích hình chóp S.ABMN.
Câu4: (2 điểm)
1) Tính tích phân: I =
∫
−+
2
1
11
dx
x
x
2) Tìm hệ số của x
8
trong khai triển thành đa thức của:
( )
[ ]
8
2
11 xx −+
Câu5: (1 điểm)
Cho ∆ABC không tù thoả mãn điều kiện: cos2A + 2
2
cosB + 2
2
cosC = 3
Tính các góc của ∆ABC.
Đề số 10
Câu1: (2 điểm)
Cho hàm số: y =
xxx 32
3
1
23
+−
(1) có đồ thị (C)
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1).
2) Viết phương trình tiếp tuyến ∆ của (C) tại điểm uốn và chứng minh rằng ∆ là tiếp tuyến của
(C) có hệ số góc nhỏ nhất.
Câu2: (2 điểm)
1) Giải phương trình: 5sinx - 2 = 3(1 - sinx)tg
2
x
2) Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số: y =
x
xln
2
trên đoạn
[ ]
3
1 e;
.
Câu3: (3 điểm)
1) Trong mặt phẳng với hệ tọa độ Đềcác Oxy cho điểm A(1; 1), B(4; -3). Tìm điểm C thuộc
đường thẳng y = x - 2y - 1 = 0 sao cho khoảng cách từ C đến đường thẳng AB bằng 6.
2) Cho hình chóp từ giác đều S.ABCD có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy
bằng ϕ (0
0
< ϕ < 90
0
). Tính tang của góc giữa hai mặt phẳng (SAB) và (ABCD) theo a và ϕ.
3) Trong không gian với hệ toạ độ Đềcác Oxyz cho điểm A(-4; -2; 4) và đường thẳng d:
+−=
−=
+−=
tz
ty
tx
41
1
23
(t ∈ R). Viết phương trình đường thẳng ∆ đi qua điểm A, cắt và vuông góc với
đường thẳng d.
Câu4: (2 điểm)
1) Tính tích phân I =
∫
+
e
xdxln
x
xln
1
31
2) Trong một môn học, thầy giáo có 30 Câu hỏi khác nhau gồm 5 Câu hỏi khó, 10 Câu hỏi
trung bình, 15 Câu hỏi dễ. Từ 30 Câu hỏi đó có thể lập được bao nhiêu đề kiểm tra, mỗi đề gồm 5
Câu hỏi khác nhau, sao cho trong mỗi đề nhất thiết phải có đủ 3 loại Câu hỏi (khó, dễ, trung bình) và
số Câu hỏi dễ không ít hơn 2?
Câu5: (1 điểm)
Xác định m để phương trình sau có nghiệm:
22422
1112211 xxxxxm −−++−=
+−−+
Đề số 11
Câu1: (2 điểm)
Cho hàm số y = x
3
- 3mx
2
+ 9x + 1 (1) (m là tham số)
1) Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = 2.
2) Tìm m để điểm uốn của đồ thị hàm số (1) thuộc đường thẳng y = x + 1.
Câu2: (2 điểm)
1) Giải phương trình:
( )( )
xsinxsinxcosxsinxcos −=+− 2212
2) Tìm m để hệ phương trình sau:
−=+
=+
myyxx
yx
31
1
có nghiệm.
Câu3: (3 điểm)
1) Trong mặt phẳng với hệ tọa độ Đềcác Oxy cho ∆ABC có các đỉnh A(-1; 0); B(4; 0); C(0;
m) với m ≠ 0. Tìm toạ độ trọng tâm G của ∆ABC theo m. Xác định m để ∆GAB vuông tại G.
2) Trong không gian với hệ toạ độ Đềcác Oxyz cho hình lăng trụ đứng ABC.A
1
B
1
C
1
. Biết
A(a; 0; 0); B(-a; 0; 0); C(0; 1; 0); B
1
(-a; 0; b) a > 0, b > 0.
a) Tính khoảng cách giữa hai đường thẳng B
1
C và AC
1
theo a, b.
b) Cho a, b thay đổi nhưng luôn thoả mãn a + b = 4. Tìm a, b để khoảng cách giữa 2 đường
thẳng B
1
C và AC
1
lớn nhất.
3) Trong không gian với hệ toạ độ Đềcác Oxyz cho 3 điểm A(2; 0; 1) B(1; 0; 0) C(1; 1; 1) và
mặt phẳng (P): x + y + x - 2 = 0. Viết phương trình mặt cầu đi qua 3 điểm A, B, C và có tâm thuộc
mặt phẳng (P).
Câu4: (2 điểm)
1) Tính tích phân I =
( )
∫
−
3
2
2
dxxxln
2) Tìm các số hạng không chứa x trong khai triển nhị thức Newtơn của
7
4
3
1
+
x
x
với x
> 0
Câu5: (1 điểm)
Chứng minh rằng phương trình sau có đúng 1 nghiệm: x
5
- x
2
- 2x - 1 = 0
Đề số 12
Câu1: (2 điểm)
Gọi (C
m
) là đồ thị của hàm số: y = mx +
1
x
(*) (m là tham số)
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (*) khi m =
1
4
2. Tìm m để hàm số (*) có cực trị và khoảng cách từ điểm cực tiểu của (C
m
) đến tiệm cận
xiên của (C
m
) bằng
1
2
Câu2: (2 điểm)
1. Giải bất phương trình:
5 1 1 2 4x x x− − − > −
2. Giải phương trình: cos
2
3xcos2x - cos
2
x = 0
Câu3: (3 điểm)
1. Trong mặt phẳng với hệ toạ độ Oxy cho hai đường thẳng
d
1
: x - y = 0 và d
2
: 2x + y - 1 = 0
Tìm toạ độ các đỉnh của hình vuông ABCD biết rằng đỉnh A thuộc d
1
, đỉnh C thuộc d
2
và các
đỉnh B, D thuộc trục hoành.
2. Trong không gian với hệ toạ độ Oxyz cho đường thẳng d:
1 3 3
1 2 1
x y z− + −
= =
−
và mặt
phẳng (P): 2x + y - 2z + 9 = 0.
a. Tìm toạ độ điểm I thuộc d sao cho khoảng cách từ I đến mặt phẳng (P) bằng 2
b. Tìm toạ độ giao điểm A của đường thẳng d và mặt phẳng (P). Viết phương trình
tham số của đường thẳng ∆ nằm trong mặt phẳng (P), biết ∆ đi qua A và vuông
góc với d.
Câu4: (2 điểm)
1. Tính tích phân I =
2
0
sin 2 sin
1 3cos
x x
dx
x
π
+
+
∫
2. Tìm số nguyên dường n sao cho:
( )
1 2 2 3 3 4 2 1
2 1 2 1 2 1 2 1 2 1
2.2 3.2 4.2 2 1 2 2005
n n
n n n n n
C C C C n C
2 +
+ + + + +
− + − + + + =
Câu5: (1 điểm)
Cho x, y, z là các số dương thoả mãn:
1 1 1
4
x y z
+ + =
. Chứng minh rằng:
1 1 1
1
2 2 2x y z x y z x y z
+ + ≤
+ + + + + +
Đề số 13
Câu1: (2 điểm)
Gọi (C
m
) là đồ thị hàm số y =
( )
2
1 1
1
x m x m
x
+ + + +
+
(*) m là tham số
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (*) khi m = 1.
2. Chứng minh rằng với m bất kỳ, đồ thị (C
m
) luôn luôn có điểm cực đại, cực tiểu và khoảng
cách giữa hai điểm đó bằng
20
Câu2: (2 điểm)
1. Giải hệ phương trình:
( )
2 3
9 3
1 2 1
3log 9 log 3
x y
x y
− + − =
− =
2. Giải phương trình: 1 + sinx + cosx + sin2x + cos2x = 0
Câu3: (3 điểm)
1. Trong mặt phẳng với hệ toạ độ Oxy cho A(2; 0) và B(6; 4). Viết phương trình đường tròn
(C) tiếp xúc với trục hoành tại hai điểm và khoảng cách từ tâm của (C) đến điểm B bằng
5.
2. Trong không gian với hệ toạ độ Oxyz cho hình lăng trụ đứng ABC.A
1
B
1
C
1
với A(0; -3; 0)
B(4; 0; 0) C(0; 3; 0) B
1
(4; 0; 4)
a. Tìm toạ độ các đỉnh A
1
, C
1
. Viết phương trình mặt cầu có tâm là A và tiếp xúc với
mặt phẳng (BCC
1
B
1
).
b. Gọi M là trung điểm của A
1
B
1
. Viết phương trình mặt phẳng P) đi qua hai điểm A,
M và song song với BC
1
. mặt phẳng (P) cắt đường thẳng A
1
C
1
tại điểm N. Tính độ
dài đoạn MN
Câu4: (2 điểm)
1. Tính tích phân: I =
2
0
sin 2 cos
1 cos
x x
dx
x
π
+
∫
2. Một đội thanh niên tính nguyện có 15 người, gồm 12 nam và 3 nữ. Hỏi có bao nhiêu cách
phân công đội thanh niên tình nguyện đó về giúp đỡ 3 tính miền núi, sao cho mỗi tỉnh có 4
nam và 1 nữ?
Câu5: (2 điểm)
Chứng minh rằng với mọi x thuộc R ta có:
12 15 20
3 4 5
5 4 3
x x x
x x x
+ + ≥ + +
÷ ÷ ÷
Khi nào đẳng thức xảy ra?
Đề số 14
Câu1: (2 điểm)
Gọi (C
m
) là đồ thị hàm số: y =
3 2
1 1
3 2 3
m
x x− +
(*) (m là tham số)
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (*) khi m = 2
2. Gọi M là điểm thuộc (C
m
) có hoành độ bằng -1. Tìm m để tiếp tuyến của (C
m
) tại điểm M
song song với đường thẳng 5x - y = 0
Câu2: (2 điểm)
Giải các phương trình sau:
1. 2
2 2 1 1 4x x x+ + + − + =
2.
4 4
3
cos sin cos sin 3 0
4 4 2
x x x x
π π
+ + − − − =
÷ ÷
Câu3: (3 điểm)
1. Trong mặt phẳng với hệ toạ độ Oxy cho điểm C(2; 0) và Elip (E):
2 2
1
4 1
x y
+ =
. Tìm toạ
độ các điểm A, B thuộc (E), biết rằng A, B đối xứng với nhau qua trục hoành va ∆ABC là
tam giác đều.
2. Trong không gian với hệ toạ độ Oxyz cho hai đường thẳng:
d
1
:
1 2 1
3 1 2
x y z− + +
= =
−
và d
2
:
2 0
3 12 0
x y z
x y
+ − − =
+ − =
a. Chứng minh rằng: d
1
và d
2
song song với nhau. Viết phương trình mặt phẳng (P)
chứa cả hai đường thẳng d
1
và d
2
b. mặt phẳng toạ độ Oxz cắt hai đường thẳng d
1
, d
2
lần lượt tại các điểm A, B. Tính
diện tích ∆OAB (O là gốc toạ độ)
Câu4: (2 điểm)
1. Tính tích phân: I =
( )
2
sin
0
cos cos
x
e x xdx
π
+
∫
2. Tính giá trị của biểu thức M =
( )
4 3
1
3
1 !
n n
A A
n
+
+
+
biết rằng
2 2 2 2
1 2 3 4
2 2 149
n n n n
C C C C
+ + + +
+ + + =
Câu5: (1 điểm)
Cho các số nguyên dương x, y, z thoả mãn xyz = 1. Chứng minh rằng:
3 3 3 3
3 3
1 1
1
3 3
x y y z
z x
xy yz zx
+ + + +
+ +
+ + ≥
Khi nào đẳng thức xảy ra?
Đề số 15
Phần chung có tất cả các thí sinh
Câu1: (2 điểm)
1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số: y = 2x
3
- 9x
2
+ 12x - 4
2. Tìm m để phương trình sau có 6 nghiệm phân biệt:
3
2
2 9 12x x x m− + =
Câu2: (2 điểm)
1. Giải phương trình:
( )
6 6
2 sin sin .cos
0
2 2sin
cos x x x x
x
+ −
=
−
2. Giải hệ phương trình:
3
1 1 4
xy xy
x y
− =
+ + + =
Câu3: (2 điểm) Trong không gian với hệ toạ độ Oxyz. Cho hình lập phương ABCD.A’B’C’D’ với
A(0; 0; 0) B(1; 0; 0) D(0; 1; 0) A’(0; 0; 1). Gọi M và N lần lượt là trung điểm của AB và CD.
1. Tính khoảng cách giữa hai đường thẳng A’C và MN.
2. Viết phương trình mặt phẳng chứa A’C và tạo với mặt phẳng Oxy một góc α biết cosα =
1
6
Câu4: (2 điểm)
1. Tính tích phân: I =
2
2 2
0
sin 2
cos 4sin
x
dx
x x
π
+
∫
2. Cho hai số thực x ≠ 0, y ≠ 0 thay đổi và điều kiện: (x + y)xy = x
2
+ y
2
- xy. Tìm GTLN
của biểu thức A =
3 3
1 1
x y
+
Phần Tự chọn: Thí sinh chọn Câu 5.a hặc Câu 5.b
Câu5a: Theo chương trình không phân ban: (2 điểm)
1. Trong mặt phẳng với hệ toạ độ Oxy cho các đường thẳng:
d
1
: x + y + 3 = 0 d
2
: x - y - 4 = 0d
3
: x - 2y = 0.
Tìm toạ độ điểm M nằm trên đường thẳng d
3
sao cho khoảng cách từ M đến đường thẳng d
1
bằng hai lần khoảng cách từ M đến đường thẳng d
2
2. Tìm hệ số của số hạng chứa x
26
trong khai triển nhị thức:
7
4
1
n
x
x
+
÷
, biết rằng:
1 2 0
2 1 2 1 2 1
2 1
n
n n n
C C C
2
+ + +
+ + + = −
Câu5b: Theo chương trình phân ban: (2 điểm)
1. Giải phương trình: 3.8
x
+ 4.12
x
- 18
x
- 2.27
x
= 0
2. Cho hình lăng trụ có các đáy là hai hình tròn tâm O và O’, bán kính bằng chiều cao và bằng
a. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn đáy tâm O’ lấy điểm B sao cho AB = 2a.
Tính thể tích của khối tứ diện OO’AB.
Đề số 16
Phần chung có tất cả các thí sinh
Câu1: (2 điểm)
Cho hàm số: y =
2
1
2
x x
x
+ −
+
1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số.
2. Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến đó vuông góc với tiệm cận xiên
của (C).
Câu2: (2 điểm)
1. Giải phương trình: cotx + sinx
1 tan .tan 4
2
x
x
+ =
÷
2. Tìm m để phương trình sau có hai nghiệm thực phân biệt:
2
2 2 1x mx x+ + = −
Câu3: (2 điểm)
Trong không gian với hệ toạ độ Oxyz cho điểm A(0; 1; 2) và hai đường thẳng :
d
1
:
1 1
2 1 1
x y z− +
= =
−
d
2
:
1
1 2
2
x t
y t
z t
= +
= − −
= +
1. Viết phương trình mặt phẳng (P) qua A, đồng thời song song với d
1
và d
2
.
2. Tìm toạ độ các điểm M ∈ d
1
, N ∈ d
2
sao cho ba điểm A, M, N thẳng hàng
Câu4: (2 điểm)
1. Tính tích phân: I =
ln5
ln3
2 3
x x
dx
e e
−
+ −
∫
2. Cho x, y là các số thực thay đổi. Tìm GTNN của biẻu thức:
A =
( ) ( )
2 2
2 2
1 1 2x y x y y− + + + + + −
Phần Tự chọn: Thí sinh chọn Câu 5.a hặc Câu 5.b
Câu5a: Theo chương trình không phân ban: (2 điểm)
1. Trong mặt phẳng với hệ toạ độ Oxy cho đường tròn (C): x
2
+ y
2
-2x - 6y + 6 = 0 và điểm
M(-3; 1). Gọi T
1
và T
2
là
các tiếp điểm của các tiếp tuyến kẻ từ M đến (C). Viết phương trình đường
thẳng T
1
T
2
2. Cho tập hợp A gồm n phần tử (n ≥ 4). Biết rằng số tập con gồm 4 phần tử của A bằng 20
lần số tập con gồm 2 phần tử của A. Tìm k ∈ {1, 2, , n} sao cho số tập con gồm k phần tử của A là
lớn nhất.
Câu5b: Theo chương trình phân ban: (2 điểm)
1. Giải bất phương trình:
( ) ( )
2
5 5 5
log 4 144 4log 2 1 log 2 1
x x−
+ − < + +
Không có nhận xét nào:
Đăng nhận xét